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 The primary aim of this paper is to devise an optimal regulator for stabilizing a 

distinct class of chaotic systems through a systematic two-step approach. Initially, 

the chaotic system undergoes transformation into state-dependent equations. 

Subsequently, the State Dependent Riccati Equation (SDRE) is tackled via the 

power series method, facilitating the determination of the optimal control law. 

Ensuring a suitable regulatory response involves the utilization of an intuitive 

optimization algorithm of a naturalistic nature, with a focus on optimizing the weight 

matrices within the SDRE equation. Employing the Artificial Bee Colony (ABC) 

algorithm, we derive the weighted matrices, leveraging the honey bee algorithm to 

fine-tune the gain coefficients by minimizing the chosen fitness function. The fitness 

function, represented as the sum of squares of system state errors, proves 

instrumental in achieving effective stabilization of the chaotic system, minimizing 

error, enhancing response speed, and reducing control costs. Through simulation, 

we scrutinize the effectiveness of regulators designed to stabilize and control chaotic 

systems, particularly comparing the regulatory performance of this algorithm against 

the SDRE method. 
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1. INTRODUCTION 

Chaos theory, a mathematical discipline, delves into the intricacies of dynamical systems highly responsive to 

initial conditions. Despite their deterministic nature, these systems lack predictability [1-2]. Demonstrating 

heightened sensitivity to initial conditions, chaotic systems undergo substantial changes even with minimal 

variations [3]. Over more than two decades, in-depth exploration of dynamical systems has unveiled the widespread 

prevalence of chaos in natural and engineering domains. The applications of chaos theory span across diverse fields, 

encompassing cryptography [4-5], robotics [6-7], biology [8], quantum physics [9], electrical engineering [10], and 

beyond. 
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Efforts to synchronize and control chaotic systems have yielded numerous methodologies. Leandro and Diego 

achieved synchronization in a nonlinear chaotic discrete system using a PID controller. The PID controller gain 

coefficients were determined through Tribe's and modified Tribe's algorithms [11]. Çimen synchronized an energy 

resource system using two distinct methods—active control and adaptive control—for these controllers [12]. Amidst 

various techniques proposed for controlling chaotic systems, optimal control methods stand out for their enhanced 

capabilities [13-17]. Beeler investigated optimal controllers for a class of affine nonlinear systems using power 

series, while Feng delved into robust optimal control for nonlinear systems, including chaotic ones [16-17]. 

In the realm of optimization, various nature-inspired algorithms, such as Genetic Algorithm (GA), Particle Swarm 

Optimization (PSO), and the ABC algorithm, have emerged. The artificial bee colony algorithm, inspired by natural 

bee behavior, was pioneered by Kara Boga [18]. Wan et al. conducted a comparative analysis, evaluating the 

performance of ABC against GA and PSO evolutionary algorithms [19]. The ABC algorithm's simplicity and its 

ease of parameter adjustment have led to its utilization in diverse research domains, spanning function optimization 

[20-21], cluster analysis, image processing, vehicle routing, and more [22-24].  

This article focuses on solving the State Dependent Riccati Equation (SDRE) using the power series, leading to 

the derivation of an optimal control law. The ABC algorithm is employed to determine optimal values for the 

weighting matrices Q and R in the SDRE equation. The structure of the paper is as follows: Section 1 introduces the 

topic. Section 2 outlines the process of designing optimal control using power series based on the SDRE method. 

Section 3 provides a comprehensive overview of the Artificial Bee Colony (ABC) algorithm in determining the 

optimal weight matrices Q and R. Section 4 presents the simulation results. Finally, Section 5 concludes the paper. 

2. VIEW OF OPTIMAL CONTROL USING POWER SERIES 

The considered nonlinear chaotic system that has nonlinearity in state and control as following form: 

�̇� = 𝑓(𝑥) + 𝑔(𝑥, 𝑢) (1) 

The system equation (Eq. (1)) can be rewrite as following form: 

𝑓(𝑥) = 𝐴(𝑥) and 𝑔(𝑥, 𝑢) = 𝐵(𝑥, 𝑢)𝑢 

where the matrices 𝐴(𝑥) and 𝐵(𝑥, 𝑢) are separate into constant part and a variable part, separately as follows: 

𝐴(𝑥) = 𝐴0 + 𝛥𝐴(𝑥) and 𝐵(𝑥, 𝑢) = 𝐵0 + 𝛥𝐵(𝑥, 𝑢) (2) 

The goal is to find a control vector that minimizes the following cost function: 

𝐽(𝑥0, 𝑢) =
1

2
∫ (𝑥(𝑡)𝑇𝑄𝑥(𝑡)

∞

0

+ 𝑢(𝑡)𝑇𝑅𝑢(𝑡))𝑑𝑡 
(3) 

In order to finding optimal control of chaotic systems using power series algorithm, the above cost function (Eq. 

(4)) must be solved. 

𝐴(𝑥)𝑇𝑃(𝑥, 𝑢) + 𝑃(𝑥, 𝑢)𝐴(𝑥)

− 𝑃(𝑥, 𝑢)𝐵(𝑥)𝑅−1𝐵(𝑥, 𝑢)𝑇𝑃(𝑥, 𝑢)

+ 𝑄 = 0 

(4) 

In this approach, 𝑃(𝑥(𝑡), 𝑢(𝑡)) can be considered as follows Eq. (5): 

𝑃(𝑥(𝑡), 𝑢(𝑡)) = 𝐿0(𝑥(𝑡), 𝑢(𝑡)) + 𝜀𝐿1(𝑥(𝑡), 𝑢(𝑡)) + 𝜀
2𝐿2(𝑥(𝑡), 𝑢(𝑡)) + ⋯  
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=∑𝜀𝑗𝐿𝑗(𝑥(𝑡), 𝑢(𝑡))

∞

𝑗=0

 
(5) 

In the above relations, jth term of power series is 𝐿𝑗and also𝜀is a positive value. In general, the equations are 

written as Eq. (5): 

𝐿𝑗(𝐴0 − 𝐵0𝑅
−1𝐵0

𝑇𝐿0) + (𝐴0
𝑇 − 𝐿0

𝑇𝐵0𝑅
−1𝐵0

𝑇)𝐿𝑗 + 𝐿𝑗−1𝛥𝐴 + 𝛥𝐴
𝑇𝐿𝑗−1 − 

∑(𝐿𝑖

𝑗−1

𝑖=1

𝐵0𝑅
−1𝐵0

𝑇𝐿𝑗−𝑖) −∑𝐿𝑖

𝑗−1

𝑖=0

(𝐵0𝑅
−1𝛥𝐵𝑇 + 𝛥𝐵𝑅−1𝐵0

𝑇)𝐿𝑗−1−𝑖  

−∑𝐿𝑖

𝑗−2

𝑖=0

𝛥𝐵𝑅−1𝛥𝐵𝑇𝐿𝑗−2−𝑖 = 0 

 

 

(6) 

 

 

With obtaining𝑃(𝑥, 𝑢), the optimal control law 𝑢(𝑥(𝑡) is rewritten as follows: 

𝑢(𝑛+1)(𝑥(𝑡)) = −𝑅−1𝐵(𝑥(𝑡), 𝑢(𝑛)(𝑡))
𝑇∑𝐿𝑗(𝑥(𝑡), 𝑢(𝑛)(𝑡))𝑥

𝑘𝑃

𝑗=0

(𝑡) 

(7) 

Where 𝑘𝑃 is the number of sentences in matrix 𝐿𝑗. 

3. A GENERAL VIEW OF ABC ALGORITHM 

The Artificial Bee Colony (ABC) algorithm has been widely used in various research studies due to its simplicity 

and the need for fewer control parameters[25]. Liao (2013) further supports this, showing that the performance of 

ABC is comparable to other population-based algorithms, and can be improved with the addition of local search 

[26]. Bolaji (2013) provides a comprehensive overview of the applications of ABC, highlighting its successful 

implementation in discrete and continuous optimization problems [27]. Ozkis (2013) presents the accelerated ABC 

(A-ABC) algorithm, which enhances the local search ability and convergence speed of the standard ABC algorithm 

[28]. These studies collectively demonstrate the versatility and effectiveness of the ABC algorithm in various 

optimization and artificial intelligence applications. 

In this paper, the ABC algorithm is used to optimize weight matrices. Selection processes in the artificial bee 

colony algorithm include the following steps:  

3.1. Global selection process 

At first, sources of food (initial questions of the problem) are randomly assigned through equation (1). 

𝑥𝑖𝑗 = 𝑥𝑗
𝑚𝑖𝑛

𝑗

𝑚𝑎𝑥𝑗
𝑚𝑖𝑛

 

(8) 

where i=1,2,…,SN (SN is the number of food sources);j=1,2,…,D (D is the number of parameters);𝑥𝑗
𝑚𝑖𝑛is min 

and 𝑥𝑗
𝑚𝑎𝑥is maximum values of parameter j. 

3.1.1. The process of local selection by the Employed Bees 

Moved Employed Bees to the food sources, which is the location of the bees in the space of the problem. Actually, 

Each Employed Bees selects a neighborhood with randomly and moves to it by equation (9). Where j and k are 
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randomly chosen parameters and neighborhoods, respectively and 𝜙𝑖𝑗is a random number within [-1, 1]. Also,𝑉𝑖is 

the new target food source. 

(9) 𝑉𝑖𝑗 = 𝑥𝑖𝑗 + 𝜙𝑖𝑗(𝑥𝑖𝑗 − 𝑥𝑘𝑗) 

If the new position (new food location) provided a greater amount of nectar, the bee would remain in the new 

area. Otherwise, it will return to its previous location. In fact, the number of consecutive times the bee travels without 

improvement is an indicator. If this indicator reaches a certain level, it indicates a lack of nectar in the area and the 

bee must leave the food location. 

3.2. Local selection process by onlooker bees 

Move onlooker bees probabilistically to food sources depending on the roulette wheel using the following 

equations and the determination of new neighborhoods as in step2: 

(10) 

 

 

(11) 

𝑝𝑖 =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖
𝑆𝑁
𝑗=1

 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 = {

1

1 + 𝑓𝑖𝑡𝑖
, 𝑓𝑖𝑡𝑖 ≥ 0

1 + 𝑎𝑏𝑠(𝑓𝑖𝑡𝑖), 𝑓𝑖𝑡𝑖 ≺ 0

 

Where 𝑓𝑖𝑡𝑖 is the value of objective function of the food source 𝑥𝑖 and 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 the nectar amount (fitness value) 

of the food source𝑥𝑖. 

3.3. Random selection process by Scout Bees 

If an unsuitable nectar source is detected, the Scout bees vacate the area and search for other options at random. 

If the trial index is reached and a better source is not found, the Scout bees will establish a new food source by 

chance using Eq. (8). 

4. SIMULATION RESULTS 

The equations describing the chaotic system of three degrees of freedom are as follows [29]: 

�̇� = 𝑎(𝑦 − 𝑥) 

�̇� = −4𝑎𝑦 + 𝑥𝑧 +𝑚𝑧3 

�̇� = −𝑎𝑑𝑧 + 𝑥3𝑦 + 𝑏𝑧2 

(12) 

In Which A, B, D And M Are Constant Parameters of The System. When The Behavior of The System Appears, 

The System Parameters Are A = 1.8, B = -0.07, D = 1.5and M = 0.12. The Electronic Circuit Schematic of The 

Chaotic System Is Seen In (Fig. (1)). The State Variables of Chaotic System and Three-Dimensional Phase Diagram 

Are Shown Respectively In (Figs. (2) To (6)): 
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Fig.1. Electronic circuit schematic of the chaotic system  

 
Fig. 2. Trajectory of states in chaotic system. 
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Fig. 3. Three-dimensional phase diagram of chaotic system. 

 

 
Fig. 4. phase portraits of state variables xandy. 

 

 
Fig. 5. phase portraits of state variables xandz. 

 

-4

-2

0

2

4

-20

-10

0

10

20
0

10

20

30

40

50

xy

z

-4 -3 -2 -1 0 1 2 3 4
-15

-10

-5

0

5

10

15

x

y

-4 -3 -2 -1 0 1 2 3 4
0

5

10

15

20

25

30

35

40

45

x

z



M. Khoshhal Rudposhti / Transactions on Machine Intelligence 6(4) (2023) 221-235 

227 

 

 
Fig. 6. phase portraits of state variables xandz. 

 

4.1. Designing an optimal regulator for chaotic systems using the SDRE method  

Description equations are obtained by adding two the control signals u1 and u2 into the chaotic system as follows: 

(13) 

{
 

 
�̇� = 𝑎(𝑦 − 𝑥)

�̇� = −4𝑎𝑦 + 𝑥𝑧 + 𝑚𝑥3 + (1 + 𝑢1)𝑢1
�̇� = −𝑎𝑑𝑧 + 𝑥3𝑦 + 𝑏𝑧2 + 𝑢2
𝑥(0) = [𝑥0 𝑦0 𝑧0]𝑇 = [0.25 −0.25 0.25].

 

Global form in the power series algorithm is shown as follows: 

(14) �̇� = 𝐴(𝑥)𝑥 + 𝐵(𝑥, 𝑢)𝑢 

By separating and replacing the constant parameters of chaotic system, the following equation is obtained: 

 

(15) 

 

[
�̇�
�̇�
�̇�

] = ([
1.8 −1.8 0
0 −7.2 0
0 0 −2.7

] + [
𝑜 𝑜 0

0.12𝑥2 0 𝑥
0 𝑥3 −0.07𝑧

]) [
𝑥
𝑦
𝑧
] + 

([
0
1
0

0
0
1
] + [

0
𝑢1
0

0
0
0
]) [

𝑢1
𝑢2
] 

Weighting matrices Q and R in the power series method are chosen as follows: 

𝑄 = 𝐼3×3 = [
1 0 0
0 1 0
0 0 1

] and𝑅 = [
1 0
0 1

] 
(16) 
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Fig. 2. Time response of state variable x with SDRE method 

 

 
Fig. 3. Time response of state variable y with SDRE method 

 

 
Fig. 4. Time response of state variable z with SDRE method 
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Fig. 5. Time response of state variables x, y and z with SDRE method 

 

 

 
Fig. 6. Time response of the control signal U1 with SDRE method 
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Fig. 7. Time response of the control signal U2 with SDRE method 

 

4.1.1. Designing an optimal regulator for chaotic systems using the ABC algorithm  

To design the optimal regulators using the ABC algorithm, the criteria of error reduction has been used as 

follows in the Eq. (17). And also, the target parameters to be optimized are 𝑘1,𝑘2, 𝑘3, 𝑘4and 𝑘5:  

  (17)  

𝑄 = [

𝑘1 0 0
0 𝑘2 0
0 0 𝑘3

]  and𝑅 =

[
𝑘4 0
0 𝑘5

]   

The design parameters in the ABC algorithm used to optimize the weight matrices are listed in the following 

table 1: 

Table 1. Control Parameters of ABC algorithm: 

the number of colony size (employed bees+ onlooker bees) NP=20 

the number of food sources equals the half of the colony size Food Number=NP/2 

a food source which could not be improved through "limit" trials is 

abandoned by its employed bee 

limit=100 

the number of cycles for foraging {a stopping criteria} Max Cycle=10 

 

By applying this algorithm, weighted matrices are obtained as follows: 

 

𝑄 = [
6.4708 0 0
0 1 0
0 0 10

]   and 𝑅 = [
2.3774 0
0 8.3307

]   
(18) 
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Fig. 8. Time Response of State Variable x With ABC Algorithm 

 

 
 

Fig. 9. Time Response of State Variable y With ABC Algorithm 

 

 
Fig. 10. Time Response of State Variable z With ABC Algorithm 
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Fig.11. Time Response of State Variable x, y and z With ABC Algorithm 

 

 
Fig. 12. Time response of the control signal U1 with ABC algorithm 

 

 
Fig. 13. Time response of the control signal U2 with ABC algorithm 
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5. CONCLUSION 

This paper presents a novel technique for developing the optimal regulator for a specific category of chaotic 

systems via the honey bee algorithm, a nature-inspired optimization algorithm. The approach involves a two-stage 

process. Firstly, an optimal regulator is formulated using power series based on the state of state-dependent reticulate 

equations. The key advantage of this regulatory function is its applicability in developing regulators for chaotic 

systems that have been linearized in both state and control. In the second phase, optimized weighting matrices are 

acquired through the use of the ABC algorithm, with the aim of enhancing system responsiveness. The main function 

of the optimal regulator designed with this algorithm is that: 

1. It can be used to design the regulator of chaotic systems that have linearization in state and control. 

2. By minimizing the fitness function, the values are more appropriate for the coefficients of the regulator's 

gain. So that a new optimal design regulation is able to control the chaotic system with faster regulator 

response and narrower control (smaller) control laws. 

In simulations have been shown, the abilities of proposed regulator. 
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