The Best Planning For a Grid-Connected Microgrid Takes Into Account Load and Renewable Generation Uncertainty As Well As Battery Storage

Document Type : Original Article

Authors

Department of electrical and computer engineering, Shahid Beheshti University, Tehran, Iran

Abstract

One of the finest solutions for supplying electrical energy in rural places is to use hybrid renewable energy. When using renewable energy sources to meet demand, the right capacity of these sources should be chosen because they are dependent on weather and other factors. It is very impressive to take into account the stochastic nature of wind speed and solar radiation when estimating the potential of renewable energy sources like wind and solar. One issue with employing renewable energy like wind and solar in micro-grids is their inherent unpredictability and random stochastic nature, which made planning and forecasting for such resources challenging. To represent uncertainty in both Wind and PV resources, stochastic programming and probability scenarios are used in this project. Gams software uses mixed integer programming to determine the best way to program a micro-grid that is connected to the main grid. The Virtual Power Producer uses the main control system to manage optimal production and load control.

Keywords


Morais, H., Kádár, P., Faria, P., Vale, Z. A., & Khodr, H. M. (2010). Optimal scheduling of a renewable micro-grid in an isolated load area using mixed-integer linear programming. Renewable Energy, 35(1), 151–156. doi:10.1016/j.renene.2009.02.031
Liu, G., Xu, Y., & Tomsovic, K. (2016). Bidding strategy for microgrid in day-ahead market based on hybrid stochastic/robust optimization. IEEE transactions on smart grid, 7(1), 227–237. doi:10.1109/tsg.2015.2476669
Tsikalakis, A. G., & Hatziargyriou, N. D. (2011). Centralized control for optimizing microgrids operation. 2011 IEEE Power and Energy Society General Meeting, San Diego, CA. doi:10.1109/pes.2011.6039737
Agrawal, M., & Mittal, A. (2011). Micro grid technological activities across the globe: A review. Int. J. Res. Rev. Appl. Sci, 7(2), 147–152.
Gu, W., Wu, Z., Bo, R., Liu, W., Zhou, G., Chen, W., & Wu, Z. (2014). Modeling, planning and optimal energy management of combined cooling, heating and power microgrid: A review. International Journal of Electrical Power & Energy Systems, 54, 26–37. doi:10.1016/j.ijepes.2013.06.028
Sharma, S., Bhattacharjee, S., & Bhattacharya, A. (2016). Grey wolf optimisation for optimal sizing of battery energy storage device to minimise operation cost of microgrid. IET Generation, Transmission and Distribution, 10(3), 625–637. doi:10.1049/iet-gtd.2015.0429
Moghaddam, A. A., Seifi, A., & Niknam, T. (2012). Multi-operation management of a typical micro-grids using Particle Swarm Optimization: A comparative study. Renewable and Sustainable Energy Reviews, 16(2), 1268–1281. doi:10.1016/j.rser.2011.10.002
Mohamed, F. A., & Koivo, H. N. (2010a). System modelling and online optimal management of MicroGrid using Mesh Adaptive Direct Search. International Journal of Electrical Power & Energy Systems, 32(5), 398–407. doi:10.1016/j.ijepes.2009.11.003
Niknam, T., Kavousifard, A., Tabatabaei, S., & Aghaei, J. (2011). Optimal operation management of fuel cell/wind/photovoltaic power sources connected to distribution networks. Journal of Power Sources, 196(20), 8881–8896. doi:10.1016/j.jpowsour.2011.05.081
Niknam, T., Azizipanah-Abarghooee, R., & Narimani, M. R. (2012). An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation. Applied Energy, 99, 455–470. doi:10.1016/j.apenergy.2012.04.017
Mohamed, F. A., & Koivo, H. N. (2010b). System modelling and online optimal management of MicroGrid using Mesh Adaptive Direct Search. International Journal of Electrical Power & Energy Systems, 32(5), 398–407. doi:10.1016/j.ijepes.2009.11.003