Seryasat, O. R., & Haddadnia, J. (2017). Assessment of a novel computer aided mass diagnosis system in mammograms. Biomedical Research, 28(7), 3129-3135.
Seryasat, O. R., & Haddadnia, J. (2018). Evaluation of a new ensemble learning framework for mass classification in mammograms. Clinical breast cancer, 18(3), e407-e420.
Kuzmanovic, A., & Knightly, E. W. (2003). Low-rate TCP-targeted denial of service attacks: the shrew vs. the mice and elephants. In Proceedings of the 2003 conference on Applications, technologies, architectures, and protocols for computer communications (pp. 75-86). ACM. doi:10.1145/863955.863966
Hernandez-Serrano, J., León, O., & Soriano, M. (2011). Modeling the lion attack in cognitive radio networks. EURASIP Journal on Wireless Communications and Networking, 2011, 2. doi:10.1155/2011/242304
Maciá-Fernández, G., Díaz-Verdejo, J. E., García-Teodoro, P., & de Toro-Negro, F. (2007). LoRDAS: A low-rate DoS attack against application servers. In International Workshop on Critical Information Infrastructures Security (pp. 197-209). Springer, Berlin, Heidelberg. doi:10.1007/978-3-540-89173-4_17
Maciá-Fernández, G., Díaz-Verdejo, J. E., García-Teodoro, P., & de Toro-Negro, F. (2007). LoRDAS: A low-rate DoS attack against application servers. In International Workshop on Critical Information Infrastructures Security (pp. 197-209). Springer, Berlin, Heidelberg. doi:10.1007/978-3-540-89173-4_17
Yang, J. S., Park, M. W., & Chung, T. M. (2013, June). A Study on Low-Rate DDoS Attacks in Real Networks. In Information Science and Applications (ICISA), 2013 International Conference on (pp. 1-4). IEEE. doi:10.1109/ICISA.2013.6579418
Delio, M. (2001). New breed of attack zombies lurk [R/OL].
Sun, H., Lui, J. C., & Yau, D. K. (2004). Defending against low-rate TCP attacks: Dynamic detection and protection (pp. 196-205). IEEE.
Luo, X., & Chang, R. K. (2005). On a New Class of Pulsing Denial-of-Service Attacks and the Defense. In NDSS.
Shevtekar, A., Anantharam, K., & Ansari, N. (2005). Low rate TCP denial-of-service attack detection at edge routers. IEEE Communications Letters, 9(4), 363-365. doi:10.1109/LCOMM.2005.1413635
Kuzmanovic, A., & Knightly, E. W. (2006). Low-rate TCP-targeted denial of service attacks and counter strategies. IEEE/ACM Transactions on Networking (TON), 14(4), 683-696. doi:10.1109/TNET.2006.880180
Shevtekar, A., & Ansari, N. (2008). A router-based technique to mitigate reduction of quality (RoQ) attacks. Computer Networks, 52(5), 957-970. doi:10.1016/j.comnet.2007.11.015
Zhang, C., Yin, J., Cai, Z., & Chen, W. (2010). RRED: robust RED algorithm to counter low-rate denial-of-service attacks. IEEE Communications Letters, 14(5). doi:10.1109/LCOMM.2010.05.091407
Razian, M. R. TCP Low Rate DDoS Attack Detection.
Xiang, Y., Li, K., & Zhou, W. (2011). Low-rate DDoS attacks detection and trace back by using new information metrics. IEEE transactions on information forensics and security, 6(2), 426-437. doi:10.1109/TIFS.2011.2107320
Mathew, R., & Katkar, V. (2011). Software based low rate dos attack detection mechanism. International journal of computer applications, 20(6), 14-18. doi:10.5120/2439-3285
Zhang, C., Cai, Z., Chen, W., Luo, X., & Yin, J. (2012). Flow level detection and filtering of low-rate DDoS. Computer Networks, 56(15), 3417-3431. doi:10.1016/j.comnet.2012.07.003
Wu, Z. J., Lei, J., Yao, D., Wang, M. H., & Musa, S. M. (2013). Chaos-based detection of LDoS attacks. Journal of Systems and Software, 86(1), 211-221. doi:10.1016/j.jss.2012.07.065
Baskar, M., Gnanasekaran, T., & Saravanan, S. (2013). Adaptive IP traceback mechanism for detecting low rate DDoS attacks. In Emerging Trends in Computing, Communication and Nanotechnology (ICE-CCN), 2013 International Conference on (pp. 373-377). IEEE. doi:10.1109/ICE-CCN.2013.6528526
Wu, Z., Cui, Y., Yue, M., Ma, L., & Wang, L. (2014). Cross-correlation based synchronization mechanism of lddos attacks. Journal of Networks, 9(3), 604. doi:10.4304/jnw.9.3.604-611
Luo, J., Yang, X., Wang, J., Xu, J., Sun, J., & Long, K. (2014). On a mathematical model for low-rate shrew DDoS. IEEE transactions on information forensics and security, 9(7), 1069–1083. doi:10.1109/tifs.2014.2321034
Tang, Y., Luo, X., Hui, Q., & Chang, R. K. (2014). Modeling the Vulnerability of Feedback-Control Based Internet Services to Low-Rate DoS Attacks. IEEE Trans. Information Forensics and Security, 9(3), 339-353. doi:10.1109/TIFS.2013.2291970
Wu, Z., Li, G., Yue, M., & Zeng, H. (2014). DDoS: Flood vs. Shrew. JCP, 9(6), 1426-1435. doi:10.4304/jcp.9.6.1426-1435
Bhuyan, M. H., Bhattacharyya, D. K., & Kalita, J. K. (2015). An empirical evaluation of information metrics for low-rate and high-rate DDoS attack detection. Pattern Recognition Letters, 51, 1-7. doi:10.1016/j.patrec.2014.07.019