Speed Control Of The Interior Permanent Magnet Synchronous Motor Over A Wide Range Using Fuzzy Logic Controller

Document Type : Original Article


University of Isfahan, Isfahan, Iran


This paper presents a Fuzzy Logic Controller (FLC) scheme for speed control of an interior permanent magnet synchronous motor (IPMSM) drive over a wide speed range. The proposed FLC is designed based on maximum torques per ampere operation below the rated speed and the field weakening operation above the rated speed, respectively. The main features of the proposed scheme using a fuzzy controller to control both flux and torque simultaneously, in whole speed range. The effectiveness of the proposed FLC is investigated for a 40kW IPMSM and simulated using MatLab/Simulink. The simulation results are compared to those obtained from the conventional PI controller base drive at various conditions such as: step change of command speed and load torque, the disconnection of one phase and parameter variations. Simulation results demonstrate the appropriate dynamic response, robustness again changes, capability in removing load disturbances, without overshoot and undershoot, minimum settling time and lowest steady-state error of the proposed controller over a wide speed range.


Uddin, M. N., Abido, M. A., & Rahman, M. A. (2005). Real-time performance evaluation of a genetic-algorithm-based fuzzy logic controller for IPM motor drives. IEEE Transactions on Industry Applications, 41(1), 246-252. doi:10.1109/TIA.2004.840995
Ibrahim, Z., & Levi, E. (2002). A comparative analysis of fuzzy logic and PI speed control in high-performance AC drives using experimental approach. IEEE Transactions on Industry Applications, 38(5), 1210-1218. doi:10.1109/TIA.2002.802993
Rahman, M. A., & Hoque, M. A. (1997). On-line self-tuning ANN-based speed control of a PM DC motor. IEEE ASME Transactions on Mechatronics, 2(3), 169-178. doi:10.1109/3516.622969
Yi, S. Y., & Chung, M. J. (1998). Robustness of fuzzy logic control for an uncertain dynamic system. IEEE Transactions on Fuzzy Systems, 6(2), 216-225. doi:10.1109/91.669018
Lin, C. K., Fu, L. C., & Liu, T. H. (2010). Design and implementation of a nonlinear speed controller with adaptive back stepping sliding mode technique for an IPMSM drive system. Στο SICE Annual Conference 2010, Proceedings of (σσ. 110–115). IEEE.
Areed, F. G., Saraya, S. F., & Elsalam, M. M. A. (2010). Adaptive control of a synchronous motor via a sliding mode decomposition technique. Ain Shams Engineering Journal, 1(2), 121-129. doi:10.1016/j.asej.2011.03.005
Cernat, M., Comnac, V., Cotorogea, M., Korondi, P., Ryvkin, S., & Cernat, R. M. (2000). Sliding mode control of interior permanent magnet synchronous motors. In Power Electronics Congress, 2000. CIEP 2000. VII IEEE International (pp. 48-53). IEEE. doi:10.1109/CIEP.2000.891390
Pan, C. T., & Sue, S. M. (2005). A linear maximum torque per ampere control for IPMSM drives over full-speed range. IEEE Transactions on Energy Conversion, 20(2), 359-366. doi:10.1109/TEC.2004.841517
Uddin, M. N., & Lau, J. (2004). Adaptive backstepping based nonlinear control of an IPMSM drive. 2004 IEEE 35th Annual Power Electronics Specialists Conference (IEEE Cat. No.04CH37551). Aachen, Germany. doi:10.1109/pesc.2004.1355085
Rahman, M. A., Vilathgamuwa, D. M., Uddin, M. N., & Tseng, K. J. (2003). Nonlinear control of interior permanent-magnet synchronous motor. IEEE Transactions on Industry Applications, 39(2), 408-416. doi:10.1109/TIA.2003.808932
Zhou, J., Wang, Y., & Zhou, R. (2002). Adaptive backstepping control of separately excited DC motor with uncertainties. PowerCon 2000. 2000 International Conference on Power System Technology. Proceedings (Cat. No.00EX409). Perth, WA, Australia. doi:10.1109/icpst.2000.900037
Uddin, M. N., Radwan, T. S., & Rahman, M. A. (2002). Performances of fuzzy-logic-based indirect vector control for induction motor drive. IEEE Transactions on Industry Applications, 38(5), 1219-1225. doi:10.1109/TIA.2002.802990
Mathur, H. D., & Ghosh, S. (2006). A comprehensive analysis of intelligent controllers for load frequency control. In Power India Conference, 2006 IEEE (pp. 5-pp). IEEE. doi:10.1109/POWERI.2006.1632619
Uddin, M. N., & Rahman, M. A. (2003). Fuzzy logic based speed control of an IPM synchronous motor drive. Engineering Solutions for the Next Millennium. 1999 IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.99TH8411). Edmonton, Alta., Canada. doi:10.1109/ccece.1999.804872
Uddin, M. N. (2003). Comparative analysis of intelligent controllers for high performance interior permanent magnet synchronous motor drive systems. Large Engineering Systems Conference on Power Engineering. Montreal, Que., Canada. doi:10.1109/lescpe.2003.1204678
Abido, M. A., Nasir Uddin, M., & Rahman, M. A. (2003). A new fuzzy logic controller based IPM synchronous motor drive. IEEE International Electric Machines and Drives Conference, 2003. IEMDC’03. Madison, WI, USA. doi:10.1109/iemdc.2003.1210696
Butt, C., & Rahman, M. A. (2004). Limitations of simplified fuzzy logic controller for IPM motor drive. Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting. Seattle, WA, USA. doi:10.1109/ias.2004.1348727
Uddin, M. N. (2011). An adaptive-filter-based torque-ripple minimization of a fuzzy-logic controller for speed control of IPM motor drives. IEEE Transactions on Industry Applications, 47(1), 350-358. doi:10.1109/TIA.2010.2090316