Analysis of the Droop Control Method in DC Microgrids with Regard to the Types of Load

Document Type : Original Article


Department of Electrical Engineering, Shahid Beheshti University, Tehran, Iran


The droop control approach divides load demand among voltage source converters in microgrids in a decentralized manner. Different factors, such as the microgrid line impedances, have an impact on the power sharing accuracy of the droop approach. This research evaluates the droop controller's power-sharing accuracy for the first time with respect to three different load types: constant impedance (CI), constant current (CC), and constant power (CP). Additionally, the impact of DC microgrid configuration on the accuracy of power sharing is investigated in this work. To support the conclusions, the simulation results in the Matlab/Simulink software environment are shown.


Justo, J. J. (2013). AC-microgrids versus DC-microgrids with distributed energy resources. A review. Renewable and Sustainable Energy Reviews24, 387–405.
Basak, P., Chowdhury, S., Halder nee Dey, S., & Chowdhury, S. P. (2012). A literature review on integration of distributed energy resources in the perspective of control, protection and stability of microgrid. Renewable and Sustainable Energy Reviews16(8), 5545–5556. doi:10.1016/j.rser.2012.05.043
Zamora, R., & Srivastava, A. K. (2010). Controls for microgrids with storage: Review, challenges, and research needs. Renewable and Sustainable Energy Reviews14(7), 2009–2018. doi:10.1016/j.rser.2010.03.019
Ma, Z., & Jiang, W. (2014, Μάιος). An adaptive droop voltage control for DC microgrid systems. The 26th Chinese Control and Decision Conference (2014 CCDC). Changsha, China. doi:10.1109/ccdc.2014.6852977
Gao, F., Bozhko, S., Asher, G., & Wheeler, P. (2014). An improved voltage compensation method for droop-controlled system in DC microgrid. IECON 2014 - 40th Annual Conference of the IEEE Industrial Electronics Society. Dallas, TX, USA. doi:10.1109/iecon.2014.7048661
Zhao, X., & Li, K. (2015). Adaptive backstepping droop controller design for multi‐terminal high‐voltage direct current systems. IET Generation, Transmission and Distribution9(10), 975–983. doi:10.1049/iet-gtd.2014.0582
Hamzeh, Mohsen, Ghazanfari, A., Mohamed, Y. A.-R. I., & Karimi, Y. (2015). Modeling and design of an oscillatory current-sharing control strategy in DC microgrids. IEEE transactions on industrial electronics (1982)62(11), 6647–6657. doi:10.1109/tie.2015.2435703
Hamzeh, M., Ashourloo, M., & Sheshyekani, K. (2014). Dynamic performance improvement of DC microgrids using virtual inductive impedance loop. The 5th Annual International Power Electronics, Drive Systems and Technologies Conference (PEDSTC 2014). Tehran, Iran. doi:10.1109/pedstc.2014.6799418
Lu, X., Sun, K., Guerrero, J. M., Vasquez, J. C., Huang, L., & Wang, J. (2015). Stability enhancement based on virtual impedance for DC microgrids with constant power loads. IEEE transactions on smart grid6(6), 2770–2783. doi:10.1109/tsg.2015.2455017
Lu, X., Guerrero, J. M., Sun, K., & Vasquez, J. C. (2014). An improved droop control method for DC microgrids based on low bandwidth communication with DC bus voltage restoration and enhanced current sharing accuracy. IEEE transactions on power electronics29(4), 1800–1812. doi:10.1109/tpel.2013.2266419
Majumder, R., Ghosh, A., Ledwich, G., & Zare, F. (2009). Power sharing and stability enhancement of an autonomous microgrid with inertial and non-inertial DGs with DSTATCOM. 2009 International Conference on Power Systems. Kharagpur, India. doi:10.1109/icpws.2009.5442666
He, J., Li, Y. W., Guerrero, J. M., Blaabjerg, F., & Vasquez, J. C. (2013). An islanding microgrid power sharing approach using enhanced virtual impedance control scheme. IEEE transactions on power electronics, 28(11), 5272–5282. doi:10.1109/tpel.2013.2243757.