Modeling the Human Sinoatrial Node Based on Sequential Discharge Hypothesis

Document Type : Original Article

Authors

1 Department of Biomedical Engineering, Semnan University, Semnan, Iran

2 Department of Electrical Engineering, Faculty of Technology and Engineering, Adiban Institute of Higher Education, Garmsar, Iran.

Abstract

The electrical synchronization of human sinoatrial (SA) node cells for propagating the pacemaker activity has always been an important challenge in literatures. Nevertheless, most literatures, that provide hypotheses for the electrical synchronization of SA node cells, only investigated the activity of a very small group of coupled SA node cells. Therefore, this study proposes a novel SA node model based on the sequential discharge hypothesis to estimate the electrical potential around the SA node, which electrodes measure it. This model consists of a three-dimensional regular network of Hodgkin-Huxley (HH) model modified by time constantthat propagates the action potentials of dominant pacemaker through the gap junctions. The results show that the HH model modified in this study not only has adequate capacity for generating oscillations between 40 and 180 beats per minute (BPM), but also their three-dimensional regular network can provide a suitable estimate from the electrical potential around the SA node. Therefore, this model is a good suggestion for the electrical synchronization of large mammalian SA node cells, especially human.

Keywords


Campbell, N. A., & Reece, J. B. (2009). Biology: Concepts & Connections: Pearson/Benjamin Cummings.
Guyton, A.C. and Hall, J.E., (2006). Textbook of Medical Physiology: Elsevier Saunders.
Israel, S. A., Irvine, J. M., Cheng, A., Wiederhold, M. D., & Wiederhold, B. K. (2005). ECG to identify individuals’. Pattern Recognition. 38, 133–142.
Byrne, D. G., & Rosenman, R. H. (1990). Anxiety and the Heart. International College of Psychosomatic Medicine. World, C.
Robertson, D. (2014). Primer on the autonomic nervous system (2ο έκδ.; I. Biaggioni, G. Burnstock, P. A. Low, D. Robertson, & J. Paton, Επιμ.). Academic Press.
Dawson, T. H. (2014). Allometric Relations and Scaling Laws for the Cardiovascular System of Mammals’. Journal of systems, 2(2), 168–185.
Bristow, D. G., & Clark, J. W. (1982). A mathematical model of primary pacemaking cell in SA node of the heart’. American Journal of Physiology - Heart and Circulatory Physiology, 243(2), H207–H218.
Irisawa, H., & Noma, A. (1982). Pacemaker mechanisms of rabbit sinoatrial node cells’. Cardiac rate and rhythm. 35–51.
Noble, D., Difrancesco, D., & Denyer, J. C. (1989). Ionic mechanisms in normal and abnormal cardiac pacemaker activity’. In Neuronal and Cellular Oscillators. 59–85.
Noble, D., & Noble, S. J. (1228). A Model of Sino-Atrial Node Electrical Activity Based on a Modification of the DiFrancesco--Noble (1984) Equations’. Proceedings of the Royal Society of London B: Biological Sciences, 222, 295–304.
Wilders, R., Jongsma, H. J., & Van Ginneken, A. C. (1991). Pacemaker activity of the rabbit sinoatrial node. A comparison of mathematical models’. Biophysical Journal, 60(5), 1202–1216.
Lovell, N. H., Cloherty, S. L., Celler, B. G., & Dokos, S. (2004). A gradient model of cardiac pacemaker myocytes. Progress in Biophysics and Molecular Biology, 85(2–3), 301–323. doi:10.1016/j.pbiomolbio.2003.12.001
Verkerk, Arie O., van Ginneken, A. C. G., & Wilders, R. (2009). Pacemaker activity of the human sinoatrial node: role of the hyperpolarization-activated current, I(f). International Journal of Cardiology, 132(3), 318–336. doi:10.1016/j.ijcard.2008.12.196
Connor, J. A., Walter, D., & McKown, R. (1977). Neural repetitive firing: modifications of the Hodgkin-Huxley axon suggested by experimental results from crustacean axons. Biophysical Journal, 18(1), 81–102. doi:10.1016/S0006-3495(77)85598-7
Verkerk, A. O., Wilders, R., Van Borren, M. M. G. J., Peters, R. J. G., Broekhuis, E., Lam, K., … Tan, H. L. (2007). Pacemaker current (If) in the human sinoatrial node. European Heart Journal.
Verheule, S., van Kempen, M. J. A., Postma, S., Rook, M. B., & Jongsma, H. J. (2001). Gap junctions in the rabbit sinoatrial node. American Journal of Physiology. Heart and Circulatory Physiology, 280(5), H2103–H2115. doi:10.1152/ajpheart.2001.280.5.h2103
Cronin, J., (1987). Mathematical Aspects of Hodgkin-Huxley Neural Theory: Cambridge University Press.
Malmivuo, J., & Plonsey, R. (1995). Bio electromagnetism: Principles and Applications of Bioelectric and Biomagnetic Fields. Oxford University Press.
Tohno, Y., Tohno, S., Viwatpinyo, K., Minami, T., Chaisuksunt, V., Mahakkanukrauh, P., & Quiggins, R. (2014). Age-related changes of elements in the human sinoatrial nodes. OA anatomy, 2, 1–6.
Michaels, D. C., Matyas, E. P., & Jalife, J. (1987). Mechanisms of sinoatrial pacemaker synchronization: a new hypothesis. Circulation Research, 61(5), 704–714. doi:10.1161/01.res.61.5.704
Spray, D. C., Harris, A. L., & Bennett, M. V. (1981). Equilibrium properties of a voltage-dependent junctional conductance. The Journal of General Physiology, 77(1), 77–93. doi:10.1085/jgp.77.1.77
Bennett, M. V. L., & Verselis, V. K. (1992). Biophysics of gap junctions’. Seminars in Cell Biology, 3(1), 29–47.
Cheng, D.K., (1989). Field and Wave Electromagnetics: Addison-Wesley.
Fuster, V., O'Rourke, R.A., Walsh, R. and Poole-Wilson, P., (2007). Hurst's the Heart, 12th Edition: McGraw-Hill Education.
Kurata, Y., Hisatome, I., Imanishi, S., & Shibamoto, T. (2002). Dynamical description of sinoatrial node pacemaking: improved mathematical model for primary pacemaker cell. American Journal of Physiology. Heart and Circulatory Physiology283(5), H2074-101. doi:10.1152/ajpheart.00900.2001