Balancing Unicycle Travelling on an Inclined Surface

Document Type : Original Article

Authors

Electrical & Electronic Engineering Department, Shahed University, Tehran, Iran

Abstract

A self-balancing unicycle robot is equipped with roll stabilizing unit and a wheel which is in charge of simultaneous unicycle frame upright holding and path tracking. Linear quadratic regulators (LQR) are designed for the roll, pitch and path tracking to make the vehicle successfully perform its desired operations. Even though control loops in general and LQR in specific subdue disturbances such as road slope, still some extra strong measures may be required. The road tilt alters the device dynamic and exerts forces influencing its behavior against reference commands. In this respect, gain scheduling LQR is designed and its impact on the system performance with regard to the conventionally designed LQR is discussed. Simulation results are used to validate the propositions. 

Keywords


  1.  

    Ruan, X., Hu, J., & Wang, Q. (2009). Modeling with Euler-lagrang equation and cybernetical analysis for a unicycle robot. 2009 Second International Conference on Intelligent Computation Technology and Automation. Changsha, Hunan, China. doi:10.1109/icicta.2009.263

    Kappeler, F.(2007).Unicycle robot, Technical report, Automatic Control Laboratory, Ecole Polytechnique Federale de Lausanne.

    Lee, J., Han, S., & Lee, J. (2013). Decoupled dynamic control for pitch and roll axes of the unicycle robot. IEEE transactions on industrial electronics (1982), 60(9), 3814–3822. doi:10.1109/tie.2012.2208431

    Dao, M.-Q., & Liu, K.-Z. (2005). Gain-scheduled stabilization control of a unicycle robot. JSME International Journal Series C: Mechanical Systems, Machine Elements and Manufacturing, 48(4), 649–656. doi:10.1299/jsmec.48.649

    Xu, J. X., Guo, Z. Q., & Lee, T. H. (2014). On integral sliding mode control for a unicycle. International journal of vehicle design, 64(1), 101. doi:10.1504/ijvd.2014.057801

    Rubagotti, M., Estrada, A., Castanos, F., Ferrara, A., & Fridman, L. (2011). Integral sliding mode control for nonlinear systems with matched and unmatched perturbations. IEEE transactions on automatic control, 56(11), 2699–2704. doi:10.1109/tac.2011.2159420

    Guo, Z., Xu, J.-X., & Lee, T. H. (2009, Ιούλιος). A gain-scheduling optimal fuzzy logic controller design for unicycle. 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Singapore. doi:10.1109/aim.2009.5229855

    Daoxiong, G., Qi, P., Guoyu, Z., & Xinghui, L. (2012). LQR control for a self-balancing unicycle robot on inclined plane. Journal of System Design and Dynamics, 6(5), 685–699. doi:10.1299/jsdd.6.685

    Buccieri, D., Perritaz, D., Mullhaupt, P., Jiang, Z.-P., & Bonvin, D. (2009). Velocity-scheduling control for a unicycle mobile robot: Theory and experiments. IEEE transactions on robotics: a publication of the IEEE Robotics and Automation Society, 25(2), 451–458. doi:10.1109/tro.2009.2014494

    Srinivas, K. N., & Behera, L. (2008). Swing-up control strategies for a reaction wheel pendulum. International Journal of Systems Science, 39(12), 1165–1177. doi:10.1080/00207720802095137

    1. P. Hespanha, (2009). Linear systems theory, Princeton university press.

    Rashid, M. Z. A., & Sidek, S. N. (2012). Controller Design Of Unicycle Mobile Robot. IIUM Engineering Journal, 13(2).