Landmine Detection by Correlation Method in Different Environments

Document Type : Original Article

Authors

1 Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran

2 Department of Electrical Engineering, Assistance prof. of Electrical Eng, Amirkabir University of Technology, Tehran, Iran

Abstract

In this paper, the purpose is the detection of a landmine in an environment using the scattering parameter. The Ground Penetrating Radar (GPR) measures the scattering parameter. The scattering parameter is taken from a simple environment in which a landmine exists alone as a reference signal. Signals taken from the complex environment are compared with the reference signal. In fact, the presence of a landmine influences the scattering parameter. The similarity between measured signal and reference signal determines the presence of the landmine. The correlation function calculates similarity. This method is very applicable because the scattering parameter is unique.

Keywords


Park, S., Kim, K., & Ko, K. H. (2014). Multi-Feature Based Multiple Landmine Detection Using Ground Penetration Radar. Radioengineering, 23(2), 642–651.
Caratelli, D., Yarovoy, A., & Ligthart, L. P. (2011). ‘Full-Wave Modeling of Buried Pipe Detection with Low-Frequency Ground-Penetrating Radar. Στο Novel Applications of the UWB Technologies (σσ. 177–182). InTech.
Bradford, J. H., Dickins, D. F., & Brandvik, P. J. (2010). Airborne GPR to Detect Oil under Snow (No. 24). SINTEF Report.
Khuut, T. S. E. E. D. U. L. A. M. (2009). Application of Polarimetric GPR to detection of subsurface objects (Doctoral dissertation, Ph. D. dissertation, Dept. Elect. Eng. Tohoku Univ).
Gurbuz, A. C., McClellan, J. H., & Scott, W. R. (2009). A compressive sensing data acquisition and imaging method for stepped frequency GPRs. IEEE transactions on signal processing: a publication of the IEEE Signal Processing Society, 57(7), 2640–2650. doi:10.1109/tsp.2009.2016270
Yelf, R. J. (2007). Application of ground penetrating radar to civil and geotechnical engineering. Electromagnetic Phenomena, 7(1), 18.
Stickley, G. F., Noon, D. A., Cherniakov, M., & Longstaff, I. D. (2000). Gated stepped-frequency ground penetrating radar. Journal of Applied Geophysics, 43(2–4), 259–269. doi:10.1016/s0926-9851(99)00063-4
Porandla, R., Ravikanth, G., & Ramu, P. (2013). Power Optimization In Digital Circuits Using Scan-Based BIST. IJRCCT, 2(6), 339-346.
Ismail, A., Elmogy, M., & ElBakry, H. (2014). Landmines Detection Using Autonomous Robots: A Survey. International Journal of Emerging Trends & Technology in Computer Science (IJETTCS), 3(4), 184-187.
Haupt, R. W., & Rolt, K. D. (2005). Standoff acoustic laser technique to locate buried land mines. Lincoln Laboratory Journal, 15(1), 3-22.
Takahashi, K., Igel, J., Preetz, H., & Sato, M. (2014). Influence of heterogeneous soils and clutter on the performance of ground-penetrating radar for landmine detection. IEEE transactions on geoscience and remote sensing: a publication of the IEEE Geoscience and Remote Sensing Society, 52(6), 3464–3472. doi:10.1109/tgrs.2013.2273082
Kolba, M. P., & Jouny, I. I. (2004). Buried land mine detection using complex natural resonances on GPR data. IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477). Toulouse, France. doi:10.1109/igarss.2003.1293909
Yang, C.-C., & Bose, N. K. (2005). Landmine detection and classification with complex-valued hybrid neural network using scattering parameters dataset. IEEE Transactions on Neural Networks, 16(3), 743–753. doi:10.1109/TNN.2005.844906
Balan, A. N., & Azimi-Sadjadi, M. R. (1995). Detection and classification of buried dielectric anomalies by means of the bispectrum method and neural networks. IEEE transactions on instrumentation and measurement, 44(6), 998–1002. doi:10.1109/19.475145
Azimi-Sadjadi, M. R., & Stricker, S. A. (1994). Detection and classification of buried dielectric anomalies using neural networks-further results. IEEE transactions on instrumentation and measurement, 43(1), 34–39. doi:10.1109/19.286352
Plett, G. L., Doi, T., & Torrieri, D. (1997). Mine detection using scattering parameters. IEEE Transactions on Neural Networks, 8(6), 1456–1467. doi:10.1109/72.641468
Ramm, A. G. (2005). Wave scattering by small bodies of arbitrary shapes (pp. 379-403). Springer US.
Roberts, R. L., & Daniels, J. J. (1996). Analysis of GPR polarization phenomena. Journal of environmental & engineering geophysics, 1(2), 139–157. doi:10.4133/jeeg1.2.139
Chew, K. M., Sudirman, R., Mahmood, N. H., Seman, N., & Yong, C. Y. (2013). Human brain microwave imaging signal processing: Frequency domain (S-parameters) to time domain conversion. Engineering, 05(05), 31–36. doi:10.4236/eng.2013.55b007
Jamlos, M. A., Jamlos, M. F., & Ismail, A. H. (2015, May). High performance novel UWB array antenna for brain tumor detection via scattering parameters in microwave imaging simulation system. In Antennas and Propagation (EuCAP), 2015 9th European Conference on (pp. 1-5). IEEE.
Jamlos, M.A. , Jamlos, M.F., Ismail, A.H.(2015). Lung Tumour Detection from a system of Scattering Parameters. 9th European Conference on Antennas and Propagation (EuCAP), 1-5.
Barton, D. K., & Leonov, S. A. (1998). Radar technology encyclopedia. Artech house.
Pozar, D. M. (2009). Microwave engineering. John Wiley & Sons.
Hejazi, M. A., Alehoseini, H. A., & Gharehpetian, G. B. (2010, Νοέμβριος). Detection of transformer winding axial displacement using scattering parameter and ANN. 2010 IEEE International Conference on Power and Energy. Kuala Lumpur, Malaysia. doi:10.1109/pecon.2010.5697606
Carlson, A. B., Crilly, P. B., & Rutledge, J. C. Communication Systems, 2002.
Gonzalez-Huici, M. A., Uschkerat, U., & Hoerdt, A. (2007). Numerical simulation of electromagnetic-wave propagation for land mine detection using GPR. 2007 IEEE International Geoscience and Remote Sensing Symposium. Barcelona, Spain. doi:10.1109/igarss.2007.4423974
Gürbüz, A. C., McClellan, J. H., & Scott, W. R. (2006, May). Predicting GPR target locations using time delay differences. In Detection and Remediation Technologies for Mines and Minelike Targets XI (Vol. 6217, p. 621731). International Society for Optics and Photonics.
Montoya, T. P., & Smith, G. S. (1999). Land mine detection using a ground-penetrating radar based on resistively loaded Vee dipoles. IEEE transactions on antennas and propagation, 47(12), 1795–1806. doi:10.1109/8.817655
Papoulis, A., & Pillai, S. U. (2002). Probability, random variables, and stochastic processes. Tata McGraw-Hill Education.