Studying The Influences of Visual Neurofeedback Below the Range Of Δ Frequency Band

Document Type : Original Article


1 Department of Biomedical Engineering, Semnan University, Semnan, Iran

2 Assistant Prof, Department of Electrical Engineering, Shams Higher Education Institute, Gorgan, Iran


The treatment of conditions like attention deficit disorder through visual neurofeedback not only alleviates the side effects linked with medications but also empowers the brain to autonomously regulate its functions. Numerous research studies employ visual neurofeedback targeting standard EEG bands, especially the beta band, for addressing attention deficit issues. These studies argue that such neurofeedback protocols specifically modulate brain function, exerting the most pronounced influence on the 0.5 to 1.5 Hz EEG band. Consequently, our study delves into the impact of visual neurofeedback on the 0.5 to 1.5 Hz band with the aim of enhancing the visual attention of normal adult subjects. Two distinct neurofeedback training protocols were implemented: the relative beta-I band power and fractal dimension. Subjects underwent 12 training sessions, each lasting 15 minutes. Visual attention assessment utilized the Test of Variables of Attention (TOVA). The results demonstrated significant improvements in the visual attention of subjects for both protocols (DRT = 37.3 ms and 19.6 ms for the beta-I protocol and fractal dimension protocol, respectively). Moreover, an analysis of the data indicated a noteworthy decrease in the relative band power of 0.5 to 1.5 Hz across all subjects throughout the 12 training sessions (DRP = 1.19±0.36 and 0.63±0.39 for the beta-I protocol and fractal dimension protocol, respectively). This implies that this specific band could be an effective approach for enhancing visual attention in visual neurofeedback or eye biofeedback, potentially mitigating eye movements.


  • Riha, C., Güntensperger, D., Oschwald, J., Kleinjung, T., & Meyer, M. (2021). Application of Latent Growth Curve modeling to predict individual trajectories during neurofeedback treatment for tinnitus. Progress in brain research, 263, 109-136 .
  • Dorvashi, M., & Behzadfar, N. (2022). The Change in Individual Alpha Frequency During Neurofeedback Training. 2022 30th International Conference on Electrical Engineering (ICEE), 743-747. org/10.1109/icee55646.2022.9827027.
  • Taskov, T., & Dushanova, J. (2022 Taskov, T., & Dushanova, J. (2022). Improving Functional Connectivity in Developmental Dyslexia through Combined Neurofeedback and Visual Training. Symmetry, 14, 369. Symmetry, 14, 369.
  • Cho, B.-H., Kim, S., Shin, D. I., Lee, J. H., Lee, S. M., Kim, I. Y., & Kim, S. I. (2004). Neurofeedback training with virtual reality for inattention and impulsiveness. Cyberpsychology & Behavior: The Impact of the Internet, Multimedia and Virtual Reality on Behavior and Society, 7(5), 519–526. doi:10.1089/1094931042403055
  • Egner, T., & Gruzelier, J. H. (2004). EEG biofeedback of low beta band components: frequency-specific effects on variables of attention and event-related brain potentials. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 115(1), 131–139. doi:10.1016/s1388-2457(03)00353-5
  • McKenzie, K., & Murray, G. (2013). Psychotherapy as entropy management. Medical Hypotheses, 81(2), 156–158. doi:10.1016/j.mehy.2013.05.023
  • Pavlov, I. P., Gantt, W. A. H., & VolborTH, G. V. D. (1929). Lectures on Conditioned Reflexes... Translated... by W. Horsley Gantt... with the collaboration of G. Volborth, etc.(Vol. 2. Translated and edited by WH Gantt)[With portraits and a bibliography.]. Martin Lawrence.
  • Pavlov, I. P. (2013). Conditioned reflexes and psychiatry-Lectures on conditioned reflexes, Vol. 2 (Vol. 2). Read Books Ltd.
  • Kandel, E. R. (2001). The molecular biology of memory storage: a dialogue between genes and synapses. Science (New York, N.Y.), 294(5544), 1030–1038. doi:10.1126/science.1067020
  • Purves, D. (1997). Neuroscience, Sinauer Associates, Inc., Sunderland, Mass.
  • Bashashati, A., Ward, R. K., Birch, G. E., Hashemi, M. R., & Khalilzadeh, M. A. (2004). Fractal dimension-based EEG biofeedback system. Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE Cat. No.03CH37439). Cancun, Mexico. doi:10.1109/iembs.2003.1280200
  • Holtmann, M. (2014). Neurofeedback for ADHD: A Review of Current Evidence. Child and Adolescent Psychiatric Clinics of North America. 23, 789–806.
  • Pop-Jordanova, N., Markovska-Simoska, S., & Zorcec, T. (2005). Neurofeedback treatment of children with attention deficit hyperactivity disorder. Prilozi / Macedonian Academy of Sciences and Arts. Section of Biological and Medical Sciences, 26, 71–80.
  • Allanson, J. (2000). Supporting the development of electrophysiologically interactive computer systems. Lancaster University (United Kingdom).
  • Bakshi, U. A. (2009). Feedback control systems. Technical Publications.
  • Gupta, M., Jin, L., & Homma, N. (2004). Static and Dynamic Neural Networks: From Fundamentals to Advanced Theory. Wiley.
  • Wiener, N. (1988). The human use of human beings: Cybernetics and society (No. 320). Da capo press.
  • Lubar, J. O., & Lubar, J. F. (1984). Electroencephalographic biofeedback of SMR and beta for treatment of attention deficit disorders in a clinical setting. Biofeedback and Self-Regulation, 9(1), 1–23. doi:10.1007/bf00998842
  • Yener, G. G., & Başar, E. (2013). Brain oscillations as biomarkers in neuropsychiatric disorders: following an interactive panel discussion and synopsis. Supplements to Clinical Neurophysiology, 62, 343–363. doi:10.1016/b978-0-7020-5307-8.00016-8
  • Shouse, M. N., & Lubar, J. F. (1979). Operant conditioning of EEG rhythms and ritalin in the treatment of hyperkinesis. Biofeedback and Self-Regulation, 4(4), 299–312. doi:10.1007/bf00998960
  • Bresnahan, S. M., Anderson, J. W., & Barry, R. J. (1999). Age-related changes in quantitative EEG in attention-deficit/hyperactivity disorder. Biological psychiatry, 46(12), 1690-1697.
  • Tenev, A., Markovska-Simoska, S., Kocarev, L., Pop-Jordanov, J., Müller, A., & Candrian, G. (2014). Machine learning approach for classification of ADHD adults. International Journal of Psychophysiology: Official Journal of the International Organization of Psychophysiology, 93(1), 162–166. doi:10.1016/j.ijpsycho.2013.01.008
  • Woltering, S., Jung, J., Liu, Z., & Tannock, R. (2012). Resting state EEG oscillatory power differences in ADHD college students and their peers. Behavioral and Brain Functions: BBF, 8(1), 60. doi:10.1186/1744-9081-8-60
  • Yaghoobi, R. A. Y. (2014). The Effects of Beta-I and Fractal Dimension Neurofeedback on Reaction Time. International Journal of Intelligent Systems and Applications, 6(11), 1–11.
  • Derogatis, L. R. (1975). SCL-90-R: Symptom Checklist-90-R: Administration, scoring, and procedures manual. NCS Pearson.
  • Van Der Laan, L. (1999). The Symptom Checklist-90 Revised Questionnaire: No Psychological Profiles in Complex Regional Pain Syndrome–Dystonia. Journal of Pain and Symptom Management, 17(5), 357–362.
  • Accessories/g.MOBIlab-Specs-Features.