High efficiency nonvolatile D Flip-Flop

Document Type : Original Article

Authors

Engineering Faculty, University of Guilan, Rasht, Iran

Abstract

In the rapidly evolving landscape of semiconductor technology, the relentless shrinkage of transistors poses a considerable challenge, notably in terms of power dissipation. Flip-flops, fundamental electronic components, face the brunt of this downsizing trend, prompting engineers to explore innovative solutions. One such approach involves strategically deactivating circuits at specific intervals to curb power dissipation, albeit with the drawback of potential data loss. To overcome this limitation, designers have turned to Magneto resistive Tunnel Junction (MTJ) devices, which impart non-volatility to circuits. Renowned for their superior speed and lower power consumption, MTJ devices play a pivotal role in the creation of a non-volatile Flip-Flop. The presented research showcases noteworthy improvements, with enhancements of up to 54%, 5%, and 17% in write energy, clk-q delay, and power-delay-product, respectively, compared to other examined circuits.

Keywords


  • Morsali, M., & Moaiyeri, M. H. (2021). Ultra-high-performance magnetic nonvolatile level converter flip-flop with spin-hall assistance for dual-supply systems with power gating architecture. Circuits, Systems, and Signal Processing, 40, 1383-1396.
  • Natsui, M., Yamagishi, G., & Hanyu, T. (2021). Design of a highly reliable nonvolatile flip-flop incorporating a common-mode write error detection capability. Japanese journal of applied physics, 60(SB), SBBB02.
  • Kim, S. K., Oh, T. W., Lim, S., Ko, D. H., & Jung, S. O. (2021). High-performance and area-efficient ferroelectric FET-based nonvolatile flip-flops. IEEE Access, 9, 35549-35561.
  • Morsali, M., & Moaiyeri, M. H. (2020). NVLCFF: an energy-efficient magnetic nonvolatile level converter flip-flop for ultra-low-power design. Circuits, Systems, and Signal Processing, 39(6), 2841-2859.
  • Kahleifeh, Z., & Thapliyal, H. (2021, July). Low-energy and CPA-resistant adiabatic CMOS/MTJ logic for IoT devices. 2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI). Presented at the 2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), Tampa, FL, USA. doi:10.1109/isvlsi51109.2021.00064
  • Esposito, D., De Caro, D., Di Meo, G., Napoli, E., & Strollo, A. G. M. (2019). Low-power hardware implementation of least-mean-square adaptive filters using approximate arithmetic. Circuits, Systems, and Signal Processing, 38(12), 5606–5622. doi:10.1007/s00034-019-01132-y
  • Wang, Z.-Z., Hung, Y.-H., Wu, J.-T., Hong, Z.-J., & Lin, J.-F. (2021, September 15). A 0.5V True-Single-Phase 16T Flip-Flop in 180-nm CMOS for IoT Applications. 2021 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW). Presented at the 2021 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), Penghu, Taiwan. doi:10.1109/icce-tw52618.2021.9602974
  • Deng, E., Kang, W., Zhao, W., Wei, S., Wang, Y., & Zhang, D. (2021, May). Spin-orbit torque nonvolatile flip-flop designs. 2021 IEEE International Symposium on Circuits and Systems (ISCAS). Presented at the 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Korea. doi:10.1109/iscas51556.2021.9401183
  • Park, J. (2017, May). Area-efficient STT/CMOS non-volatile flip-flop. 2017 IEEE International Symposium on Circuits and Systems (ISCAS). Presented at the 2017 IEEE International Symposium on Circuits and Systems (ISCAS), Baltimore, MD, USA. doi:10.1109/iscas.2017.8050697
  • Technology Working Group. (2020). The International Roadmap for Devices and Systems: 2020. Executive Summary. Technical report, Institute of Electrical and Electronics Engineers
  • .Razi, F., Moaiyeri, M. H., & Rajaei, R. (2021). Design of an energy-efficient radiation-hardened non-volatile magnetic latch. IEEE Transactions on Magnetics, 57(1), 1–10. doi:10.1109/tmag.2020.3033229
  • Jaiswal, A., Andrawis, R., & Roy, K. (2018). Area-efficient nonvolatile flip-flop based on spin hall effect. IEEE Magnetics Letters, 9, 1–4. doi:10.1109/lmag.2018.2829676
  • Peng, S., Zhang, Y., Wang, M. X., Zhang, Y. G., & Zhao, W. (2014). Magnetic Tunnel Junctions for Spintronics: Principles and Application.
  • Cao, Y. (2018). Ptm. http://ptm. asu. edu/.
  • Morsali, M., & Moaiyeri, M. H. (2020). NVLCFF: An energy-efficient magnetic nonvolatile level converter flip-flop for ultra-low-power design. Circuits, Systems, and Signal Processing, 39(6), 2841–2859. doi:10.1007/s00034-019-01309-5
  • Wang, Z., Zhao, W., Deng, E., Klein, J. O., & Chappert, C. (2015). Perpendicular-anisotropy magnetic tunnel junction switched by spin-Hall-assisted spin-transfer torque. Journal of Physics D: Applied Physics, 48(6), 065001.
  • Peng, S., Zhang, Y., Wang, M. X., Zhang, Y. G., & Zhao, W. (2014). Magnetic Tunnel Junctions for Spintronics: Principles and Application.
  • Farkhani, H., Peiravi, A., Kargaard, J. M., & Moradi, F. (2014, September). Comparative study of FinFETs versus 22nm bulk CMOS technologies: SRAM design perspective. 2014 27th IEEE International System-on-Chip Conference (SOCC). Presented at the 2014 27th IEEE International System-on-Chip Conference (SOCC), Las Vegas, NV, USA. doi:10.1109/socc.2014.6948971
  • Kwon, K.-W., Choday, S. H., Kim, Y., Fong, X., Park, S. P., & Roy, K. (2014). SHE-NVFF: Spin hall effect-based nonvolatile flip-flop for power gating architecture. IEEE Electron Device Letters, 35(4), 488–490. doi:10.1109/led.2014.2304683
  • Ali, K., Li, F., Lua, S. Y. H., & Heng, C.-H. (2018). Energy- and area-efficient spin–orbit torque nonvolatile flip-flop for power gating architecture. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 26(4), 630–638. doi:10.1109/tvlsi.2017.2787664
  • Wang, Z., Zhang, L., Wang, M., Wang, Z., Zhu, D., Zhang, Y., & Zhao, W. (2018). High-density NAND-like spin transfer torque memory with spin orbit torque erase operation. IEEE Electron Device Letters, 39(3), 343–346. doi:10.1109/led.2018.2795039