Diabetes Diagnosis from Big Data using Fuzzy-Neural Chaotic Tree

Document Type : Original Article


1 Department of Information Technology, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran

2 Department of Computer Engineering, Sabzevar Branch, Islamic Azad University Sabzevar, Iran


Today, diabetes is recognised as a significant global health issue. Worldwide statistics indicate an increasing prevalence of the disease, thereby presenting a challenging problem for modern medicine.  To address this issue, computer science has presented various methods for the diagnosis and prediction of diabetes. However, there remain unresolved issues and errors that researchers endeavour to rectify. Data mining is employed as a technical means of identifying and extracting fresh knowledge from data. This research presents a new technique for categorising diabetic data, which involves three stages. Firstly, preprocessing is carried out, in which data normalisation procedures are performed. This is followed by attribute extraction and selection. Finally, classification takes place using data mining principles. The obtained classification outcomes can be employed to forecast diabetes in varied individuals. The results are evaluated using certain standards, such as sensitivity, specificity, and accuracy. Our suggested methodology, which combines chaotic fuzzy-neural with K-means tree, is more appropriate than previous techniques, as confirmed by the outcomes.


  • Shortliffe, E. H. (1990). Medical Informatics: Computer Applications in Medicine. Addison-Wesley.
  • Botstein, D., & Risch, N. (2003). Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease. Nature Genetics, 33 Suppl(S3), 228–237. https://doi.org/10.1038/ng1090
  • Huang, Y., Mccullagh, P., Black, N., & Harper, R. (2005). Feature selection and classification model construction on type 2 diabetic patient’s data, Adv. Adv. Data Min, 153–162. https://doi.org/10.1007/978-3-540-30185-1_17
  • Tama, B. A., Rodiyatul, & Hermansyah, H. (2011). An early detection method of type-2 diabetes mellitus in public hospital. TELKOMNIKA (Telecommunication Computing Electronics and Control), 9(2), 287. https://doi.org/10.12928/telkomnika.v9i2.699
  • Wolpert, D. H. (1996). The lack of A Priori distinctions between learning algorithms. Neural Computation, 8(7), 1341–1390. https://doi.org/10.1162/neco.1996.8.7.1341
  • Fang, H., Rizzo, M. L., Wang, H., Espy, K. A., & Wang, Z. (2010). A new nonlinear classifier with a penalized signed fuzzy measure using effective genetic algorithm. Pattern recognition, 43(4), 1393-1401. https://doi.org/10.1016/j.patcog.2009.10.006
  • Khan, N., Gaurav, D., & Kandl, T. (2013). Performance evaluation of Levenberg-Marquardt technique in error reduction for diabetes condition classification. Procedia Computer Science, 18, 2629–2637. https://doi.org/10.1016/j.procs.2013.05.455
  • Nai-arun, N., & Moungmai, R. (2015). Comparison of classifiers for the risk of diabetes prediction. Procedia Computer Science, 69, 132–142. https://doi.org/10.1016/j.procs.2015.10.014
  • Perveen, S., Shahbaz, M., Guergachi, A., & Keshavjee, K. (2016). Performance analysis of data mining classification techniques to predict diabetes. Procedia Computer Science, 82, 115–121. https://doi.org/10.1016/j.procs.2016.04.016
  • Kandhasamy, J. P., & Balamurali, S. (2015). Performance analysis of classifier models to predict diabetes mellitus. Procedia Computer Science, 47, 45–51. https://doi.org/10.1016/j.procs.2015.03.182
  • Çalişir, D., & Doğantekin, E. (2011). An automatic diabetes diagnosis system based on LDA-Wavelet Support Vector Machine Classifier. Expert Systems with Applications, 38(7), 8311–8315. https://doi.org/10.1016/j.eswa.2011.01.017
  • Ganji, M. F., & Abadeh, M. S. (2011). A fuzzy classification system based on Ant Colony Optimization for diabetes disease diagnosis. Expert Systems with Applications, 38(12), 14650–14659. https://doi.org/10.1016/j.eswa.2011.05.018
  • Upadhyaya, S., Farahmand, K., & Baker-Demaray, T. (2013). Comparison of NN and LR classifiers in the context of screening native American elders with diabetes. Expert Systems with Applications, 40(15), 5830–5838. https://doi.org/10.1016/j.eswa.2013.05.012
  • Zhu, J., Xie, Q., & Zheng, K. (2015). An improved early detection method of type-2 diabetes mellitus using multiple classifier system. Information Sciences, 292, 1–14. https://doi.org/10.1016/j.ins.2014.08.056
  • Beloufa, F., & Chikh, M. A. (2013). Design of fuzzy classifier for diabetes disease using Modified Artificial Bee Colony algorithm. Computer Methods and Programs in Biomedicine, 112(1), 92–103. https://doi.org/10.1016/j.cmpb.2013.07.009
  • Sharma, M. (2016). Diabetes Prediction by using Bacterial Foraging Optimization Algorithm and Artificial Neural Network. International Journal of Computer Science and Information Technology & Security (IJCSITS), 6.
  • Swapna, Kp, S., & Vinayakumar. (2018). Automated detection of diabetes using CNN and CNN-LSTM network and heart rate signals. Procedia Computer Science, 132, 1253–1262. https://doi.org/10.1016/j.procs.2018.05.041
  • Ramezani, R., Maadi, M., & Khatami, S. M. (2018). A novel hybrid intelligent system with missing value imputation for diabetes diagnosis. Alexandria Engineering Journal, 57(3), 1883–1891. https://doi.org/10.1016/j.aej.2017.03.043
  • Gujral, S. (2017). Early Diabetes Detection using Machine Learning: A Review. IJIRST-International Journal for Innovative Research in Science &Technology, 3.
  • Fatima, M., & Pasha, M. (2017). Survey of machine learning algorithms for disease diagnostic. Journal of Intelligent Learning Systems and Applications, 09(01), 1–16. https://doi.org/10.4236/jilsa.2017.91001
  • Somasundaram, N., & Ayyasamy, B. (2022). A new design of diabetes detection and glucose level prediction using moth flame-based crow search deep learning. Biomedical Signal Processing and Control, 77(103748), 103748. https://doi.org/10.1016/j.bspc.2022.103748
  • Suyanto, S., Meliana, S., Wahyuningrum, T., & Khomsah, S. (2022). A new nearest neighbor-based framework for diabetes detection. Expert Systems with Applications, 199(116857), 116857. https://doi.org/10.1016/j.eswa.2022.116857
  • Prabha, A., Yadav, J., Rani, A., & Singh, V. (2021). Design of intelligent diabetes mellitus detection system using hybrid feature selection based XGBoost classifier. Computers in Biology and Medicine, 136(104664), 104664. https://doi.org/10.1016/j.compbiomed.2021.104664
  • Mehedi Hassan, M., Mollick, S., & Yasmin, F. (2022). An unsupervised cluster-based feature grouping model for early diabetes detection. Healthcare Analytics, 2(100112), 100112. https://doi.org/10.1016/j.health.2022.100112
  • Fang, J., Xie, Z., Cheng, H., Fan, B., Xu, H., & Li, P. (2022). Anomaly detection of diabetes data based on hierarchical clustering and CNN. Procedia Computer Science, 199, 71–78. https://doi.org/10.1016/j.procs.2022.01.010
  • Ordas, T. G., Nbenavides, M., Benitez-Andrades, A., & Alaiz-Moreton, J. (2021). Diabetes detection using deep learning techniques with oversampling and feature augmentation. Computer Methods and Programs in Biomedicine.