Optimal Routing-Clustering Aware of Energy Consumption in Wireless Sensor Networks based on Deep Tree Learning

Document Type : Original Article


1 Department of Information Technology, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran

2 Ph.D., Department of Computer Engineering, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran


Presently, the application of Wireless Sensor Networks (WSNs) poses challenges across various domains, with the most prominent being the energy consumption of sensor batteries. Sensor nodes, dispersed in diverse geographical environments for their designated purposes, rely on batteries for data collection. The deployment of sensor nodes induces energy losses during data collection and transmission, particularly in routing data, which demands substantial energy. To tackle this issue, clustering is employed either before or concurrently with routing. This article explores the implementation of clustering-routing alongside sleep and wake scheduling in sensor nodes to effectively conserve energy. The study introduces the optimal OCADR (Constrained Anisotropic Diffusion Routing) protocol, enhancing it with the DAVL (Deep Adelson-Velskii and Landis) tree rotation clustering algorithm. The research reveals that this innovative approach offers improved scheduling in terms of sensor nodes' sleep and wake time compared to prior methods. Moreover, it efficiently transmits packets to the base station through the head clusters. The initial energy allocation was 50 Joules, and after simulation using this method, only 22 Joules were consumed, leaving 28 Joules for network survival an advancement surpassing earlier methodologies.


  • Chaudhary, R., Vatta, S., & No, P. (2014). Review paper on energy-efficient protocols in wireless sensor networks. IOSR Journal of Engineering, 4(02), 1–07.
  • Kaur, T., & Kumar, D. (2019). Computational intelligence-based energy efficient routing protocols with QoS assurance for wireless sensor networks: a survey. International Journal of Wireless and Mobile Computing, 16(2), 172. doi:10.1504/ijwmc.2019.099043
  • Poonia, R., Sanghi, A. K., & Singh, D. (2011). Energy Efficient Communication Protocols for Wireless Sensor Networks. International Journal of Computer Science and Information Technologies, 2(4), 1697–1699.
  • Bhushan, B., & Sahoo, G. (2017, July). A comprehensive survey of secure and energy efficient routing protocols and data collection approaches in wireless sensor networks. 2017 International Conference on Signal Processing and Communication (ICSPC). Presented at the 2017 International Conference on Signal Processing and Communication (ICSPC), Coimbatore. doi:10.1109/cspc.2017.8305856
  • Sadouq, Z. A., Mabrouk, M. E., & Essaaidi, M. (2014, October). Conserving energy in WSN through clustering and power control. 2014 Third IEEE International Colloquium in Information Science and Technology (CIST). Presented at the 2014 Third IEEE International Colloquium in Information Science and Technology (CIST), Tetouan, Morocco. doi:10.1109/cist.2014.7016654
  • Ruperee, A., Nema, S., & Pawar, S. (2014, February). Achieving energy efficiency and increasing network life in wireless sensor network. 2014 IEEE International Advance Computing Conference (IACC). Presented at the 2014 IEEE International Advance Computing Conference (IACC), Gurgaon, India. doi:10.1109/iadcc.2014.6779314
  • Gopika, D., & Panjanathan, R. (2020, February). A comprehensive study on various energy conservation mechanisms in wireless sensor networks. 2020 International Conference on Emerging Trends in Information Technology and Engineering (Ic-ETITE). Presented at the 2020 International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), Vellore, India. doi:10.1109/ic-etite47903.2020.285
  • Zairi, S., Zouari, B., Niel, E., & Dumitrescu, E. (2012). Nodes self-scheduling approach for maximising wireless sensor network lifetime based on remaining energy. IET Wireless Sensor Systems, 2(1), 52. doi:10.1049/iet-wss.2011.0074
  • Xu, Y., Jiao, W., & Tian, M. (2021). An energy-efficient routing protocol for 3D wireless sensor networks. IEEE Sensors Journal, 21(17), 19550–19559. doi:10.1109/jsen.2021.3086806
  • Natesan, G., Konda, S., de Prado, R. P., & Wozniak, M. (2022). A hybrid Mayfly-Aquila optimization algorithm based energy-efficient clustering routing protocol for Wireless Sensor Networks. Sensors (Basel, Switzerland), 22(17), 6405. doi:10.3390/s22176405
  • Shen, Z., Yin, H., Jing, L., Liang, Y., & Wang, J. (2022). A cooperative routing protocol based on Q-learning for underwater optical-acoustic hybrid wireless sensor networks. IEEE Sensors Journal, 22(1), 1041–1050. doi:10.1109/jsen.2021.3128594
  • Del-Valle-Soto, C., Rodríguez, A., & Ascencio-Piña, C. R. (2023). A survey of energy-efficient clustering routing protocols for wireless sensor networks based on metaheuristic approaches. Artificial Intelligence Review, 56(9), 9699–9770. doi:10.1007/s10462-023-10402-w
  • Zhu, B., Bedeer, E., Nguyen, H. H., Barton, R., & Henry, J. (2021). UAV trajectory planning in wireless sensor networks for energy consumption minimization by deep reinforcement learning. IEEE Transactions on Vehicular Technology, 70(9), 9540–9554. doi:10.1109/tvt.2021.3102161
  • Yun, W.-K., & Yoo, S.-J. (2021). Q-learning-based data-aggregation-aware energy-efficient routing protocol for wireless sensor networks. IEEE Access: Practical Innovations, Open Solutions, 9, 10737–10750. doi:10.1109/access.2021.3051360
  • Xue, X., Shanmugam, R., Palanisamy, S., Khalaf, O. I., Selvaraj, D., & Abdulsahib, G. M. (2023). A hybrid cross layer with Harris-hawk-optimization-based efficient routing for wireless sensor networks. Symmetry, 15(2), 438. doi:10.3390/sym15020438
  • Revanesh, M.., & Sridhar, V.. (2021). A trusted distributed routing scheme for wireless sensor networks using blockchain and meta‐heuristics‐based deep learning technique. Transactions on Emerging Telecommunications Technologies , 32 . http://doi.org/10.1002/ett.4259
  • Shanmugam, R.., & Kaliaperumal, B.. (2021). An energy‐efficient clustering and cross‐layer‐based opportunistic routing protocol (CORP) for wireless sensor network. International Journal of Communication Systems , 34 . http://doi.org/10.1002/dac.4752
  • Subramani, N., Perumal, S. K., Kallimani, J. S., Ulaganathan, S., Bhargava, S., & Meckanizi, S. (2022). Controlling energy aware clustering and multihop routing protocol for IoT assisted wireless sensor networks. Concurrency and Computation: Practice & Experience, 34(21). doi:10.1002/cpe.7106
  • Cherappa, V., Thangarajan, T., Meenakshi Sundaram, S. S., Hajjej, F., Munusamy, A. K., & Shanmugam, R. (2023). Energy-efficient clustering and routing using ASFO and a cross-layer-based expedient routing protocol for wireless sensor networks. Sensors (Basel, Switzerland), 23(5). doi:10.3390/s23052788
  • Vazhuthi, P. P. I., Prasanth, A., Manikandan, S. P., & Sowndarya, K. K. D. (2023). A hybrid ANFIS reptile optimization algorithm for energy-efficient inter-cluster routing in internet of things-enabled wireless sensor networks. Peer-to-Peer Networking and Applications, 16(2), 1049–1068. doi:10.1007/s12083-023-01458-0
  • Han, Y., Hu, H., & Guo, Y. (2022). Energy-aware and trust-based secure routing protocol for wireless sensor networks using adaptive genetic algorithm. IEEE Access: Practical Innovations, Open Solutions, 10, 11538–11550. doi:10.1109/access.2022.3144015
  • Zachariah, U. E., & Kuppusamy, L. (2022). A hybrid approach to energy efficient clustering and routing in wireless sensor networks. Evolutionary Intelligence, 15(1), 593–605. doi:10.1007/s12065-020-00535-0
  • Priyadarshini, R., & Sivakumar, R. (2018). Cluster head selection based on Minimum Connected Dominating Set and Bi-Partite inspired methodology for energy conservation in WSNs. Journal of King Saud University - Computer and Information Sciences.
  • Wan, R., Xiong, N., & Nguyen The Loc. (2018). An energy-efficient sleep scheduling mechanism with similarity measure for wireless sensor networks. Human-Centric Computing and Information Sciences, 8(1). doi:10.1186/s13673-018-0141-x
  • Zhang, W., Wang, J., Han, G., Zhang, X., & Feng, Y. (2019). A cluster sleep-wake scheduling algorithm based on 3D topology control in underwater sensor networks. Sensors (Basel, Switzerland), 19(1), 156. doi:10.3390/s19010156
  • Qin, Z., Zhang, X., Feng, K., Zhang, Q., & Huang, J. (2015). An efficient key management scheme based on ECC and AVL tree for large scale wireless sensor networks. International Journal of Distributed Sensor Networks, 11(9), 691498. doi:10.1155/2015/691498
  • Priyadarshini, R. R., & Sivakumar, N. (2021). Cluster head selection based on minimum connected dominating set and bi-partite inspired methodology for energy conservation in WSNs. Journal of King Saud University-Computer and Information Sciences, 33(9), 1132–1144.
  • Shabbir, N., & Hassan, S. R. (2017). Routing protocols for wireless sensor networks (WSNs). In Wireless Sensor Networks - Insights and Innovations. doi:10.5772/intechopen.70208
  • Jilbab, A., & Mohamed, E. H. (2020). Chapter 1 - Routing protocols for wireless sensor networks: A survey. In Advances in Ubiquitous Computing Cyber-Physical Systems, Smart Cities and Ecological Monitoring Advances in ubiquitous sensing applications for healthcare (pp. 3–15).
  • Hemanand, D., Senthilkumar, C., Saleh, O. S., Muthuraj, B., Anand, A., & Velmurugan, V. (2023). Analysis of power optimization and enhanced routing protocols for wireless sensor networks. Measurement: Sensors, 25, 100610.
  • Roberts, M. K., & Ramasamy, P. (2022). Optimized hybrid routing protocol for energy-aware cluster head selection in wireless sensor networks. Digital Signal Processing, 130(103737), 103737. doi:10.1016/j.dsp.2022.103737